Proteasomal degradation of human peptidyl prolyl isomerase pin1-pointing phospho Bcl2 toward dephosphorylation.

نویسندگان

  • Aruna Basu
  • Madhusudan Das
  • Suparna Qanungo
  • Xue-Jun Fan
  • Garrett DuBois
  • Subrata Haldar
چکیده

Microtubule inhibitor-induced Bcl2 phosphorylation is detrimental to its antiapoptotic function. Phosphorylation of Bcl2 predominantly occurs on two serine residues (70 and 87) in cells arrested at G2-M phase by microtubule disarraying agents. Phospho Bcl2 can associate with a cis-trans peptidyl prolyl isomerase, Pin1. Pin1 and its homologues are known to target the proline residue carboxyl terminal to the phosphorylated threonine or serine residue of mitotic phosphoproteins, such as Bcl2. However, it was not clear how an extranuclear protein could associate with nuclear Pin1. The confocal images of the immunofluorescence studies employing phospho Bcl2-specific antibody developed in the laboratory demonstrated the translocation of phospho Bcl2 inside the nucleus. Interestingly, proteasomal degradation of Pin1 facilitates dephosphorylation of phospho Bcl2 due to longer exposure of Taxol. Here we show for the first time that proteasomal degradation of Pin1 is the key factor to determine the fate of phosphoforms of Bcl2. When Pin1 is degraded by proteasomes, phospho Bcl2 is converted to its native form. Thus, transient conformational change of Bcl2 due to association with peptidyl prolyl isomerase can contribute to irreversible apoptotic signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation and characterization of the Pin1/Ess1p homologue in Schizosaccharomyces pombe.

Pin1/Ess1p is a highly conserved WW domain-containing peptidyl-prolyl isomerase (PPIase); its WW domain binds specifically to phospho-Ser/Thr-Pro sequences and its catalytic domain isomerizes phospho-Ser/Thr-Pro bonds. Pin1 PPIase activity can alter protein conformation in a phosphorylation-dependent manner and/or promote protein dephosphorylation. Human Pin1 interacts with mitotic phosphoprote...

متن کامل

The peptidyl-prolyl isomerase Pin1 determines parathyroid hormone mRNA levels and stability in rat models of secondary hyperparathyroidism.

Secondary hyperparathyroidism is a major complication of chronic kidney disease (CKD). In experimental models of secondary hyperparathyroidism induced by hypocalcemia or CKD, parathyroid hormone (PTH) mRNA levels increase due to increased PTH mRNA stability. K-homology splicing regulator protein (KSRP) decreases the stability of PTH mRNA upon binding a cis-acting element in the PTH mRNA 3' UTR ...

متن کامل

Correction for Nechama et al., "An Unusual Two-Step Control of CPEB Destruction by Pin1".

Cytoplasmic polyadenylation is a conserved mechanism that controls mRNA translation and stability. A key protein that promotes polyadenylation-induced translation of mRNAs in maturing Xenopus oocytes is the cytoplasmic polyadenylation element binding protein (CPEB). During this meiotic transition, CPEB is subjected to phosphorylation-dependent ubiquitination and partial destruction, which is ne...

متن کامل

Pin1 deficiency causes endothelial dysfunction and hypertension.

Pin1 is a peptidyl prolyl cis-trans isomerase that only binds to and isomerizes phosphorylated serine/threonine-proline motifs, inducing conformational changes that alter target protein function and phosphorylation. We have shown previously that deficiency of another peptidyl prolyl isomerase, FK506 binding protein 12/12.6, alters endothelial NO synthase phosphorylation and causes endothelial d...

متن کامل

The peptidyl prolyl cis/trans isomerase Pin1/Ess1 inhibits phosphorylation and toxicity of tau in a yeast model for Alzheimer’s disease

Since hyperphosphorylation of protein tau is a crucial event in Alzheimer’s disease, additional mechanisms besides the interplay of kinase and phosphatase activities are investigated, such as the effect of the peptidyl prolyl cis/trans isomerase Pin1. This isomerase was shown to bind and isomerize phosphorylated protein tau, thereby restoring the microtubule associated protein function of tau a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neoplasia

دوره 4 3  شماره 

صفحات  -

تاریخ انتشار 2002